AGCO Crop Tour Field Report No. 3: Soil Compaction and Plant Height |
Shorter corn height (top) results from compaction in rows next to center transport wheels bearing the weight of central-fill planters, with tires at a static 55psi.Corn height is more uniform (bottom), indicating less planter compaction, in rows where wei |
Balancing weight evenly across planter can eliminate variability in corn row height.In this third 2020 Fendt® Momentum® Crop Tour™ field update, AGCO Corporation (NYSE:AGCO) agronomists report their observations of the effect of compaction on plant height. Corn rows of uneven height can be a sign of compaction caused by planters. The weight of most high-capacity, central-fill planters is concentrated on the center transport wheels, causing excessive compaction on either side of the center wheel-track rows. This compaction at planting, resulting in what is commonly referred to as pinch rows, restricts root growth on both sides of the row and reduces uptake of nutrients and water, often preventing plants from reaching their maximum height. Stunted plant growth above ground is often an indicator of what is occurring below ground, typically translating into yield reduction in the shorter rows, says Jason Lee, AGCO agronomist and farm solutions specialist. Managing planter weight and compaction In 2020, AGCO Crop Tour plots were designed to compare how different levels of soil compaction at planting affect plant growth and corn yield. Lee and the AGCO team planted three side-by-side plots in several states using the Fendt Momentum planter at one of three settings:
Because the same tractor was used to plant all three plots in a given location, any differences noted between plots could be attributed solely to the different planter settings described above. Tractor tire pressures also were maintained at a low psi to minimize the soil compaction damage created by the tractor. Compaction from load on center of planter stunts plant height In the AGCO Crop Tour location near Chillicothe, Ohio, in particular, Lee says center rows were noticeably shorter in the plots planted when Load Logic was disabled (see top half of photo) or operating with controlled traffic settings. The height of corn planted with the planter at Load Logic’s load balance setting, however, was even across all rows (bottom of photo). Based on previous research related to pinch-row compaction, Lee says he would expect to see even greater differences in plant height if the corn had been planted with a central-fill planter with dual transport wheels, as opposed to the Momentum planter, whose in-line tandem center transport wheels eliminate planter-induced pinch rows.
Check your fields for compaction “Compaction severity is going to vary from year to year and from field to field,” Lee says, “depending on soil type, moisture conditions, tire inflation pressure, axle loads and more.” In addition to noting plant height variations between rows in fields, “a good way to assess pinch row compaction in your fields is to do hand-yield checks in rows between center transport wheel tracks and in rows with no compaction effects (no tire tracks on either side),” he says. “Compare the yield differences in those two types of rows, then do that in multiple areas of the field to better assess if you are losing bushels to pinch-row compaction,” Lee says. If you see losses, he recommends considering lower tire pressures, not planting into wet soil and looking at technology changes to lessen soil compaction in the next season. The Fendt Momentum planter will be on display at select dealer events and locations. For more information, visit Fendt.com or contact your local dealer. |